
(12) APPLICATION

(19) NO

(11) 20180688 (13) A1

NORWAY (51) Int Cl.
A63F 13/577 (2014.01)

Norwegian Industrial Property Office

(21) Application nr 20180688 (86) Int. application day

and application nr

(22) Application day 2018.05.15 (85) Entry into national

phase

(24) Date from which

the industrial

right has effect

2018.05.15 (30) Priority

(41) Available to the

public

2019.11.18

(71) Applicant Markus Fjellheim, Kjærholen 77, 4316 SANDNES, Norge

(72) Inventor Markus Fjellheim, Kjærholen 77, 4316 SANDNES, Norge

(74) Agent or Attorney HÅMSØ PATENTBYRÅ AS, Postboks 171, 4301 SANDNES, Norge

(54) Title METHOD OF RENDERING A FRAME IN A DISCRETE PHYSICS ENGINE FOR SIMULATING RIGID

BODIES IN A SPACE

(57) Abstract

Disclosed is a computer-implemented method of

rendering a frame in a discrete physics engine for

simulating rigid bodies in a space. The method

comprises the steps of: for each object being

simulated, processing a new position based on at

least the position and the velocity of the object;

updating the position of a copy of an object to

match the position of the object, if no collision has

been detected between the object and another

object while rendering the previous frame; and

detecting a collision by processing if there is an

intersection between a first object at its new

position and a line segment between a copy of a

second object and the second object at its new

position.

1

5

10

15

20

25

30

METHOD OF RENDERING A FRAME IN A DISCRETE PHYSICS ENGINE FOR

SIMULATING RIGID BODIES IN A SPACE

The present invention relates to a method of rendering a frame in a discrete

physics engine for simulating rigid bodies in a space.

A physics engine is a computer program that provides an approximate simulation

of certain physical systems by simulating Newtonian (or other) physics models so

that simulated objects behave as obeying the laws of physics. Nowadays,

physics engines are used for multiple purposes, such as analysing rigid body

dynamics, and in various domains, such as computer graphics, video games or

film production. Physics engines typically include methods for detecting

collisions.

Collision detection in a physics engine relates to the computational problem of

detecting the overlapping of two or more objects. Depending on the manner in

which collisions are detected, physics engines may be classified in one of two

ways: where the collision is detected a priori, ie. before the collision occurs, or a

posteriori, ie. after a collision occurs. These two classes of physics engines are

also known as continuous and discrete, respectively.

In a discrete physics engine, the simulation is advanced by a time step, then a

check is made as to whether any objects are overlapping (eg. using the

separating axis theorem) or are so close to each other that they are deemed to

be intersecting. This method is said to be a posteriori (ie. based on reasoning

from known facts or past events) because it typically misses the instant of

collision and only detects the collision after it has happened in simulation time.

Some of the advantages of a discrete physics engine are: typically, it requires

less processing resources than a continuous physics engine; it does not take into

account a lot of physical variables about the simulated environment in which the

rigid bodies are moving; and it does not need to take into account friction, elastic

5

10

15

20

25

30

2

collisions, or non-elastic collisions and deformable bodies.

It can be challenging to detect a collision in a discrete physics engine. Each

frame is treated separately, and the position of an object between frames is not

calculated. A low frame rate and a small fast-moving object can cause a situation

where the object does not move smoothly through space but instead seems to

teleport from one point in space to the next as each frame is calculated. Thus, a

projectile being simulated to move at a sufficiently high speed will miss a target

object, if the latter is small enough to fit in the gap between the calculated frames

of the projectile. This is usually known as the tunnelling problem. Also, it is

usually said that a projectile tunnels through a target object when the first misses

a collision with the latter due to the tunnelling problem.

Figure 1 shows a schematic view of several frames generated by a discrete

physics engine while simulating a two-dimensional environment. Two squares

move in the horizontal trajectories 110 and 120 from left to right (see time axis

102 at the top of the Figure). Both trajectories intersect the rectangle 101 that is

standing upright at a fixed position on the ground 100.

The squares of the two trajectories 110 and 120 were simulated moving at

different velocities: the square of the trajectory 110 had a lower velocity than the

square of the trajectory 120.

In the trajectory 110, the frames are processed one after another as follows: first,

square 111 is processed, then square 112, and afterwards square 113; and then,

when the subsequent square 114 is processed, the physics engine will detect a

collision with rectangle 101 because both objects intersect.

However, in the trajectory 120, the square is moving too fast and the collision is

not detected. The processing of the first two frames for the trajectory 120 results

in squares 121 and 122. However, when the subsequent frame is processed, the

square 123 will be positioned on the right-hand side of the rectangle 101 without

3

5

10

15

20

25

both objects intersecting each other. In known solutions, the trajectory 120 will

wrongfully result in that a collision is not detected.

A known solution is to define global constraints on the simulated environment,

such as limiting the velocity at which objects can move so that the objects do not

move fast enough to completely tunnel through other objects. Another known

constraint is to make the main objects large enough so that the fastest moving

objects could never completely tunnel though them. This solution puts restrictions

on the environment being simulated, and that is not a viable solution most of the

times because the scenarios that can be simulated are greatly reduced.

Another known solution is to increase the frame rate. This solution tackles the

tunnelling problem by reducing the gap between the positions of an object in two

frames in sequence. However, this solution can still be insufficient if an object

moves sufficiently fast, and it can be wasteful if in most of the simulated time the

objects are moving slowly, which does not require the additional simulation

granularity for the collisions to be detected.

The present invention will now be disclosed.

According to an aspect of the present invention, there is provided a computer-

implemented method of rendering a frame in a discrete physics engine for

simulating rigid bodies in a space, the method comprising the steps of:

- providing at least one data structure for representing an object, each

data structure comprising a position and a velocity of the object in the space;

- providing, for each data structure representing an object, at least one

second data structure for representing a copy of the object, each second data

structure comprising a position of the copy of the object in the space;

- for each object, processing a new position based on at least the position

and the velocity of the object; 30

4

- updating the position of a copy of an object to match the position of the

object, if no collision has been detected between the object and another object

while rendering the previous frame;

- detecting a collision by processing if there is an intersection between a

first object at its new position and a line segment between a copy of a second 5

object and the second object at its new position.

10

15

20

25

30

Said line segment may be a line segment between a corner of the copy of the

second object and the corresponding corner of the second object. Also, in the

step of detecting a collision, the collision may be detected if there is an

intersection between an edge of the first object and the line segment. The

collision may also be detected if there is an intersection between a face of the

first object and the line segment.

The method may comprise the steps of:

- generating a new position for the copy of the second object, the new

position of the copy being nearer to the new position of the second object;

- updating the position of the copy of the second object to match the

generated new position of the copy, if at that new position the copy does not

collide with the copy of the first object.

In the step of generating a new position for the copy of the second object, the

new position may be a random position between the position of the copy and the

new position of the second object.

Moreover, each data structure representing an object may comprise a variable for

storing whether a collision has been detected between the object and another

object when rendering the previous frame. Also, each second data structure for

representing a copy of the object may be comprised by the data structure

representing the object. Moreover, the at least one second data structure may be

provided so that, for each unordered pair of objects, there are two second data

structures, each paired object having a copy of itself being represented by one of

5

the two second data structures. Furthermore, the at least one data structure for

representing an object may comprise at least one acceleration of a point of the

object.

According to other aspects of the present invention, there is provided a data 5

processing device comprising means for carrying out the steps of the method.

There is also provided a computer program comprising instructions which, when

the program is executed by a computer, cause the computer to carry out the

steps of the method. Moreover, there is provided a computer-readable storage

medium comprising instructions which, when executed by a computer, cause the 10

computer to carry out the steps of the method.

Embodiments of the invention will now be described, by way of example only,

with reference to the accompanying drawings, in which:

15

Figure 1 is a schematic view of two objects moving at different velocities, in

which the tunnelling problem is illustrated with a faster object

tunnelling through an obstacle;

Figure 2 is a schematic view of a frame rendered by a discrete physics engine

while simulating a two-dimensional environment in accordance with a 20

method embodiment, the frame showing two objects that are set to

collide with each other;

Figures 3, 6, and 9 are schematic views of intermediate states of the simulated

environment, in which each object has a new position that has been

processed based on its position and velocity; 25

Figures 4, 7, and 10 are schematic views of further intermediate states of the

simulated environment, showing how a collision between the two

objects is checked;

Figures 5, 8, and 11 are schematic views of a first, a second, and a third frame,

respectively, rendered in sequence after the frame show in Figure 2; 30

6

Figure 12 is a schematic view of two objects colliding during a simulation in a

discrete physics engine, in which one of the objects is a concave

polygon;

Figure 13 is a schematic view of how the simulation in Figure 12 would develop

without optimizing the position of the copy of the moving object; 5

Figure 14 is a schematic view of how the simulation in Figure 12 would develop

with optimization of the position of the copy of the moving object.

10

15

20

25

30

In one method embodiment, a discrete physics engine simulates two objects

colliding in a two-dimensional space. One of the objects is standing still and the

other object is moving and colliding with the first.

Figures 2 to 11 show four frames rendered in sequence by the method

embodiment. Figure 2 illustrates a frame showing the initial positions and

velocities of both objects, and the Figures 3 to 11 are organised in the following

sets: Figures 3 to 5 show two intermediate states of the simulated environment

and a resulting first frame; Figures 6 to 8 show another two intermediate states of

the simulated environment and a resulting second frame; and Figures 9 to 11

show two more intermediate states of the simulated environment and a resulting

third frame.

The method embodiment may be carried out by configuring a discrete physics

engine and executing the latter in a computational device. The discrete physics

engine is configured with two data structures for representing each object, and

each data structure includes a position and a velocity of the respective object in

the two-dimensional space. Also, for each data structure representing an object,

a second data structure is configured in the discrete physics engine representing

a copy of the object, and it includes a position of the copy of the object in the

space. The data structures may be combined so that the object data and the

copy data are stored together in the same data structure. Moreover, each data

structure may include other data for characterising the object and/or copy, such

7

5

10

15

20

25

30

as the acceleration of the object, the shape, and the colour or other parameters

for configuring the graphical representation of the object/copy.

Each data structure representing an object includes a position and a velocity of

the respective object being simulated. That is, each data structure includes the

necessary data means for holding data that allows processing a position for the

object, such as variables for storing the coordinates values in each dimension

and the orientation/rotation values of the object, and a velocity of the object, such

as variables for storing the linear or angular velocity components of the object.

In Figure 2, the two objects are shown at their initial positions 201 and 200. The

stationary object at position 200 has a null velocity and it will be an obstacle to

the moving object at position 201. The latter is shown with an arrow drawn in its

interior, representing the direction of its velocity.

Rendering the first frame

Based the positions and velocities of the objects shown in Figure 2, a new

position is processed for each object. The object at position 200 has no velocity,

and it obtains a new position with the same coordinates as position 200. The

object at position 201 does not have a null velocity, and the new position will be

different from the position 201.

In Figure 3, the new positions of the objects are shown. The position 202 is the

new position of the moving object that is at position 201 in Figure 2 (see curved

arrow in Figure 3 showing the position update), and the new position of the object

at position 200 in Figure 2 is the same.

There are known methods for processing the new position 202. A simple

approach is to calculate which position will the moving object have if it travels

with constant velocity, starting from the position 201, during the time step defined

by the physics engine. Other kinematic models may include different aspects in

this calculation, such as medium (eg. air, water) friction or a gravity force.

8

In a discrete physics engine, no consideration is taken as to whether a collision

will occur between objects before processing new positions. It is only after the

new positions have been processed that it is checked if there are any objects

colliding when these are at the new positions. That is, the detection of collisions 5

10

15

20

25

30

is performed after the simulation has been advanced by a time step.

The new positions 200 and 202 processed for the two objects provide the

conditions for a tunnelling problem to happen. The two objects do not overlap at

these new positions 200 and 202, however, when considering the motions of the

two objects from the positions 200 and 201 to the positions 200 and 202,

respectively, the moving object performs an imaginary passage through the

stationary object. Thus, in order to avoid the tunnelling problem in this case, a

collision must be detected.

Figure 4 shows how the method embodiment detects the collision between the

two objects.

The method embodiment starts by updating the position of the copy of each

object if no collision has been detected involving the object while rendering the

previous frame, ie. the frame shown in Figure 2. No collision has been detected

for the moving object while rendering the previous frame, and, thus, the copy of

the moving object is set with the position 211, which is the position 201 that the

object had in the previous frame.

Then, four line segments 221 are processed between the position 211 of the

copy and the new position 202. Each line segment 221 starts from a corner of the

copy of the moving object at the position 211 and ends at the corresponding

corner of the moving object at the new position 202.

After this, the line segments 221 are processed to verify if they intersect with any

edge of the stationary object at position 200. In this case, it is verified that the line

9

5

10

15

20

25

30

segments 221 intersect with the edges 2001 and 2002 (see crosses drawn in

Figure 4 at the intersection points), and, therefore, a collision between the

moving object at position 202 and the stationary object at position 200 is

detected.

In order to simplify the present description, only the copy of the moving object is

mentioned, as it is sufficient for detecting the collision and avoiding the tunnelling

problem.

This approach is advantageous as it avoids the tunnelling problem and it allows

checking if there are any collisions in an efficient manner, requiring only the

verification of intersections involving line segments.

Once the detection of the collision has been processed, the velocity of the

moving object is changed, and the resulting frame is rendered. In Figure 5, the

rendered first frame is shown, including the moving object at is new position 202

with its new velocity (see the arrow inside it, representing the velocity of the

object). This velocity was processed using the velocity of the object at the

position 201 and the inversion of the angle that the velocity vector makes on the

edge 2001 of the object at position 200 (see Figure 4).

In practice, the first frame (Figure 5) is not rendered with the copy at position 202

being shown. Also, if the frames rendered by the method embodiment had been

displayed in a computer screen, the frame in Figure 5 would have been shown

subsequently to the frame in Figure 2, leaving the intermediate states, illustrated

by Figures 3 and 4, hidden.

Rendering the second frame

The steps of the method embodiment that were used for rendering the first frame

shown in Figure 5, will now be repeated to render the second frame. However,

now the method embodiment also has the data indicating the position 211 of the

10

5

10

15

20

25

30

copy of the moving object and that there was a collision detected when rendering

the frame in Figure 5.

First, the simulation is advanced one time step, and new positions are processed

for the objects based on the positions and velocities provided on Figure 5. In

Figure 6, the object at position 200 is shown standing in the same position as

before since it has a null velocity. The new position 203 has been processed for

the moving object (see the curved arrow passing over the object 200 represents

the position update).

As before, the new positions are now processed to analyse if there are any

collisions between the two objects. This step starts by updating the position of the

copies of the objects for which no collision was detected when rendering the

previous frame (Figure 5). Thus, the copy at position 211 keeps the same

position, as there was a collision detected when rendering the previous frame

(see Figure 4). Then, the line segments 222 between the copy and the moving

object at position 203 are processed. In Figure 7, the line segments 222 are

shown, and these start from a corner in the copy at position 211 and end on the

corresponding corner of the moving object at position 203. The line segments

222 are then checked for intersections with any edge of the object at position

200, and no intersection is detected. Thus, it is concluded that no collision has

occurred.

Since there was no collision detected, the velocity of the moving object at

position 203 is not changed, and the second frame is rendered as shown in

Figure 8.

When looking at the last three frames in sequence (see Figures 2, 5, and 8,

respectively), it is possible to observe the simulated trajectory of the moving

object. In the middle frame, the moving object is shown at position 202,

appearing to be doing the same as it would do in case the tunnelling problem had

happened. However, the method embodiment solves the tunnelling problem by

11

5

10

15

20

25

30

having the velocity of the object at position 202 being affected by the collision

detected with the object 200. Thus, this will have a correcting effect when

rendering the next frames, and the last frame in Figure 8 shows the object at

position 203 on the correct side of the object 200.

Rendering the third frame

At the moment of rendering the last frame in Figure 8, the copy at position 211

continues to have a different position than the object at position 203. However,

since no collision has been detected when rendering the last frame (see Figure

7), the position 211 of the copy will be updated when rendering the next frame.

In Figure 9, the moving object is shown at its new position 204, which was

processed based on the position and velocity of moving object at position 203.

Also, as before, the object 200 remains at the same position due to its null

velocity.

The method embodiment will now, as before, check if there is any collision

between the two objects (see Figure 10). First, the copy at position 211 will be

updated to match the position 203, since there was no collision detected when

rendering the previous frame, shown in Figure 8. The copy at the matched

position 212 is shown in Figure 10. Then, the line segments 223 are generated,

as before, and it is verified if the line segments 223 intersect with any of the

edges of the object at position 200. As no intersection is detected, it is concluded

that no collision is detected between the moving object and the stationary object.

The method embodiment thus moves on to render the third frame, as shown in

Figure 11.

When comparing the three intermediate states for detecting a collision (ie.

Figures 4, 7, and 10, respectively), it can be observed that the copy of the

moving object is kept at the position 211 until a collision involving the moving

object is no longer detected. Only then is the copy set with the new position 212.

12

This results in that a collision is detected as long as the moving object stays on

the wrong side of the stationary object at position 200, and thus the tunnelling

problem is avoided.

For the purposes of simplifying the present description, the situation shown in the 5

10

15

20

25

30

Figures 2 to 11 is simple and has only two objects. However, in practice many

more objects may be simulated and presented in frames rendered by a method

embodiment. Also, the objects shown are convex polygons, however in practice

other polygons may be simulated, such as concave polygons.

When simulating more than two objects, the updating of the positions of each

copy can vary. One approach is to update the position of the copy only when the

copied object is no longer detected to be colliding with any other copies being

simulated. Another approach is to provide a copy of an object for each collision

that an object may perform with the other objects being simulated, having the

position of each copy being updated if the collision corresponding to that copy is

not detected. In order to carry out this approach, the at least one second data

structure may be provided so that, for each unordered pair of objects, there are

two second data structures, each paired object having a copy of itself being

represented by one of the two second data structures.

Correction of the position of a copy of an object

When simulating objects more complex than the ones shown in Figures 2 to 11, it

may happen that the position of a copy of an object can be optimised. Figure 12

shows a stationary object, at position 300, and a moving object, at position 301,

however the stationary object at position 300 presents a concave shape. The

moving object at position 301 has a velocity towards the interior area of the

stationary object at position 300 (see arrow inside the moving object at position

301). After a new position 302 is processed for the moving object, the method

embodiment will detect a collision as shown in Figure 12: the line segment 321

between a corner of a copy of the moving object at position 301 and the

corresponding corner of the moving object at position 302 intersects with an edge

13

of the stationary object at position 300 (see cross drawn at the intersection point).

Thus, a collision is detected in this case. Also, a change in the velocity of the

object at position 302 is processed (compare arrows inside the moving object at

positions 301 and 302).

5

Without optimisation of the position of the copy of the moving object at the

position 301, the method embodiment will simulate the situation shown in Figure

13. The copy of the moving object will remain in position 301, because a collision

was detected when the object was at position 302 (see Figure 12). Also, the

object will move to the new position 303 due to the new velocity. However, the 10

detection of a collision will find the intersections between the line segments 322

and the edges of the stationary object 300 (see crosses at the intersection

points). This detected collision influences the update of the velocity of the moving

object, as if the moving object had moved from position 301 to position 303,

without having passed through position 302. 15

With optimisation of the position of the copy of the moving object at the position

301, the method embodiment will simulate the situation shown in Figure 14,

instead of Figure 13. The position 312 of the copy of the moving object was

generated after the collision in Figure 12 had been detected. The generated 20

position 312 is nearer to the position 303 of the moving object. Since the

generated position 312 did not collide with the stationary object at position 300,

the position of the copy of the moving object was updated.

One method of generating the position 312 such that the copy of the moving 25

object becomes nearer to the position 303 of the moving object is by choosing a

random position between the position 301 of the copy and the position 302 of the

second object.

Embodiments of the invention may have some or all of the following advantages: 30

• Avoids the tunnelling problem while rendering a frame in a discrete

physics engine

14

• Efficient collision detection based on intersections between line segments

and polygon edges

• Detects collisions involving concave polygons

Generally, the terms used in this description and claims are interpreted according 5

10

15

20

25

to their ordinary meaning the technical field, unless explicitly defined otherwise.

Notwithstanding, the terms “comprises” and “comprising” and variations thereof

mean that the specified features, steps or integers are included. These terms are

not interpreted to exclude the presence of other features, steps or integers.

Furthermore, the indefinite article “a” or “an” is interpreted openly as introducing

at least one instance of an entity, unless explicitly stated otherwise. An entity

introduced by an indefinite article is not excluded from being interpreted as a

plurality of the entity.

The features disclosed in the foregoing description, or in the following claims, or

in the accompanying drawings, expressed in their specific forms or in terms of a

means for performing the disclosed function, or a method or process for obtaining

the disclosed results, as appropriate, may, separately, or in any combination of

such features, be utilised for realising the invention in diverse forms thereof.

While the invention has been described in conjunction with the embodiments

described above, many equivalent modifications and variations will be apparent

to those skilled in the art when given this disclosure. Accordingly, the

embodiments of the invention set forth above are considered to be illustrative and

not limiting. Various changes to the described embodiments may be made

without departing from the spirit and scope of the invention.

15

5

10

15

20

25

CLAIMS

1. A computer-implemented method of rendering a frame in a discrete

physics engine for simulating rigid bodies in a space, the method comprising the

steps of:

- providing at least one data structure for representing an object, each

data structure comprising a position and a velocity of the object in the space;

- providing, for each data structure representing an object, at least one

second data structure for representing a copy of the object, each second data

structure comprising a position of the copy of the object in the space;

- for each object, processing a new position (202, 203, 204, 302, 303)

based on at least the position (201, 202, 203, 301) and the velocity of the object;

- updating the position (211, 212, 301) of a copy of an object to match the

position of the object, if no collision has been detected between the object and

another object while rendering the previous frame;

- detecting a collision by processing if there is an intersection between a

first object at its new position and a line segment (221, 222, 223, 321, 322, 323)

between a copy of a second object and the second object at its new position.

2. A method according to claim 1, wherein said line segment is a line

segment between a corner of the copy of the second object and the

corresponding corner of the second object.

3. A method according to any of the previous claims, wherein, in the step of

detecting a collision, the collision is detected if there is an intersection between

an edge of the first object and the line segment.

4. A method according to any of the claims 1 to 2, wherein, in the step of

detecting a collision, the collision is detected if there is an intersection between a

face of the first object and the line segment. 30

16

5

10

15

20

25

30

5. A method according to any of the claims 1 to 4, the method comprising the

steps of:

- generating a new position for the copy of the second object, the new

position of the copy being nearer to the new position of the second object;

- updating the position of the copy of the second object to match the

generated new position of the copy, if at that new position the copy does not

collide with the copy of the first object.

6. A method according to claim 5, wherein, in the step of generating a new

position for the copy of the second object, the new position is a random position

between the position of the copy and the new position of the second object.

7. A method according to any of the previous claims, wherein each data

structure representing an object comprises a variable for storing whether a

collision has been detected between the object and another object when

rendering the previous frame.

8. A method according to any of the previous claims, wherein each second

data structure for representing a copy of the object is comprised by the data

structure representing the object.

9. A method according to any of the claims 1 to 7, wherein the at least one

second data structure is provided so that, for each unordered pair of objects,

there are two second data structures, each paired object having a copy of itself

being represented by one of the two second data structures.

10. A method according to any of the previous claims, wherein the at least one

data structure for representing an object comprises at least one acceleration of a

point of the object.

11. A data processing device comprising means for carrying out the steps of

the method of any of claims 1 to 10.

17

12. A computer program comprising instructions which, when the program is

executed by a computer, cause the computer to carry out the steps of the method

of any of the claims 1 to 10.

5

13. A computer-readable storage medium comprising instructions which, when

executed by a computer, cause the computer to carry out the steps of the method

of any of the claims 1 to 10.

10

1 / 14

FIG. 1

2 / 14

FIG. 2

3 / 14

FIG. 3

4 / 14

FIG. 4

5 / 14

FIG. 5

6 / 14

FIG. 6

7 / 14

FIG. 7

8 / 14

FIG. 8

9 / 14

FIG. 9

10 / 14

FIG. 10

11 / 14

FIG. 11

12 / 14

Fig. 12

13 / 14

Fig. 13

14 / 14

Fig. 14

	Bibliographic data
	Description
	Claims
	Drawings

