Viktig informasjon i saken hentes i sanntid direkte fra EPO sitt register (European Patent Register), slik at du enkelt og raskt får oversikt i saken.
Beskrivelse Verdi
Saken / databasen er sist oppdatert info  
Tittel INNRETNINGER FOR BØLGEKRAFTVERK.
Status
Hovedstatus
Detaljstatus
Ikke i kraft info Endelig henlagt Før 2004.01.21
Søknadsnummer 19850512
Levert
Prioritet Ingen
Sakstype Nasjonal søknad
Løpedag
Utløpsdato
Allment tilgjengelig
Søker Kjell Budal (NO)
Innehaver Kjell Budal (NO)
Oppfinner Kjell Budal (NO)
Patentfamilie Se i Espacenet

Bølgekreftene på et neddykket legeme akes ved at det etableres en væskes irkulasjon rundt legemet. Sirkulasjonen kan oppnås enten ved at legemet roterer om sin egen akse eller ved at væskepartiklenes hastighet økes ved hjelp av f.eks. propellere eller ved dyser anordnet på legemets overflate. Legemets bevegelse i bølgene benyttes på kjent måte til frembringelse av ønskede energiformer.

Se forsidefigur og sammendrag i Espacenet


A1

Beskrivelse

Bølgjekrafta på neddykka, roterande lekam1. Innleiing.Ein lekam som er neddykka blir utsett for bølgjekrefter.

Vi har oppdaga at dersom lekamen blir gitt ein rotasjon rundt ein akse som går gjennom lekamen, blir bølgjekreftene på

lekamen vesentleg endra. Avhengig av innfallsretning på bølgjene i forhold til rotasjonsaksen, rotasjonsretninga og rotasjonsfarten, kan kreftene på lekamen bli både vesentleg større og vesentleg mindre enn bølgjekreftene utan rotasjon. Ved hjelp av rotasjonen kan altså bølgjekreftene på ein lekam

i vesentleg grad kontrollerast. F*- y^- f ,

Lekamen er fortrinnsvis rotasjonssymmetrisk med omsyn til rotasjon om rotasjonsaksen, f.eks. ein sylinder som roterer om sylinderaksen. Vi har eksperimentelt påvist at dersom sylinderen blei gitt ein konstant rotasjon om sylinderaksen, blei kreftene auka med ein faktor opptil 6 samanlikna med kreftene på ein ikkje-roterande sylinder. Vi kunne også redusere kreftene på sylinderen ved å snu rotas jonsretninga .'

2. Anvendelsar i bølgjekraftverk.Neddykka lekamar u-tsette for bølgjekrefter kan utnyttast

til konvertering av bølgjeenergi til nytteenergi. Bølgje-kreftene set lekamen i rørsle. Ved å dempa svingerørsla ved ein dempingsmekanisme, kan nytteenergi produserast. Eksempel-vis kan lekamen koplast til botnen via pumper. Når lekamen blir sett i rørsle, vil væska bli pumpa gjennom ein hydraulisk motor eller turbin, som i sin tur driv ein elektrisk gene-rator. Den sokalla Bristolsylinderen (Britisk forslag til bølgjekraftverk) arbeider etter eit slikt prinsipp.

Dersom kreftene på den neddykka lekamen blir auka, vilogså energiproduksjonen auka. Dette kan ein altså oppnåved å rotera lekamen.

Avhengig av rotasjonsretninga, kan kreftene på lekamen også reduserast. Dette kan vera av interesse for å redusera påkjenningane på bølgjekraftverket i ekstreme bølgjehøgder. Det kan også vera av interesse å regulera energiproduksjonen, f.eks. i forhold til forbruket. Dette kan då gjerast ved å regulera rotasjonsretninga og rotasjons farten til lekamen.

Eit viktig krav til bøgjekraftverk er at dempingsmeka-nismen arbeider mellom lekamen og eit punkt som står fast

i eller i det minste har ein relativ bevegelse i forhold til lekamen. Eit slikt fast punkt kan f.eks. vera sjøbotnen. Dette gjeld for "Bristolsylinderen". Men botnen kan vera langt nede. Dessutan er det vanligvis dyrt å skaffa foran-kringspunkt på botnen som skal tola relativt store krefter. Roterande lekamar kan eliminera behovet for å gå til botnen for å skaffa det nødvendige referansepunktet. Lat oss tenkja oss to parallelle sylindrar som roterer i motsett retning. Desse blir utsette for rotasjonsinduserte bølgje-krefter. Men pga..at sylindrane roterer motsett, er også desse bølgjekreftene motsett retta. Sylindrane vil derfor oscillera med motsett fase og avstanden mellom dei vil såleis variera i takt med bølgjene. Dersom vi nå tilkoplar pumper mellom sylindrane'vil dei kunna produsera energi.

Vi ser altså at vi nå har den nødvendige referansen innan systemet sjølv. Behovet for eit ytre referansepunkt som pumpene kan arbeida mot, f.eks. botnen, er såleis éliminert. Med denne metoden kan ein nå f.eks. laga flytande kraftverk med konvensjonelle forankringssystem for å t>alda kraftverket på plass.

Sirkulasjon utan rotasjon av lekamen

Rotasjonen av sylinderen set opp ein sirkulasjon av vatn rundt sylinderen. Kombinasjonen av det sirkulerande vatnet og det oscillerande vatnet i bølgja er det som gir opphav til dei rotasjonsinduserte bølgjekreftene. Dersom det då er mulig å laga sirkulasjon av vatn på ein alternativ måte til å la sjølve sylinderen rotera, vil dette ha same verknad så

vidt angår bølgjekreftene på sylinderen. Ein måte å gjera dette på er f.eks. å laga spalteforma, skråstilte opningar i sylinderveggen som det blir pumpa vatn ut gjennom på ein slik måte at det blir sett opp ein sirkulasjon rundt sylinderen. Ved å regulere farten på vatnet ut gjennom spaltene kan ein regulera bølgjekreftene på sylinderen. 5ja

Ein annan måte å laga sirkulasjon på er å setja propellar

på utsida av lekamen og på den måten etablera ein sirkulasjon den eine eller den andre vegen rundt lekamen. Sjc h' <■■ Y^~*~

Rotasjonsaksen eller sirkulasjonsaksen til lekamen kan ha ulike orienteringar i forhold til innfallsretninga til bølgja og til vinkelretninga.

Lekamen treng heller ikkje vera heilt neddykka, men kan

vera halvt neddykka. Ein heilt neddykka lekam kan likevel ha visse fordelar avdi bølgjekreftene då vil auka tilnærma lineært med bølgjeamplituden.

Dersom lekamen har form som ei plate eller ein venge-

profil, vil ein translasjon av vengen i vatnet i same plan som vengeplanet eller alternativt ein tvungen vass-

straum forbi vengen, gi ei ekstra løftekraft på vengen i bølgjer. ^ jc1 -£x'y^u

Vengeprofilar

Ein flyveng gir løftekraft fordi vengen set opp ein sirkulasjon av luft rundt vengen pga. vengens utforming og vengens vinkel i forhold til luftstraumen forbi vengen.

Tilsvarande kan ein oppnå bølgjeinduserte løftekrefter

på neddykka, vengeforma lekamar. Verkemåten er analog til det som gjeld for ein roterande sylinder, bortsett frå

at løftekreftene ikkje aukar lineært med bølgjehøgda,

slik som tilnærma er tilfelle for roterande sylindrar. «->J a q

3. Anvendelsar i offshore-konstruksjonar.Bølgjekreftene på "offshore"-konstruksjonar induserer

uønska rørsler på konstruksjonane. Ved å kontrollera kreftene på f.eks. pontongane til halvt-nedsenkbare platt-former, kan den totale bølgjekrafta på konstruksjonen som heilhet minimaliserast. Er kreftene små, så er også

rørslene små. Roterande lekamar^påtvungne vass-straumar rundt eller forbi lekamar og/eller vingeutforming av lekamar kan såleis nyttast til å redusera rørslene til "offshorekonstruksjonar".

Krav

1. Innretning for påverknad av bølgjekreftene på ein neddykka lekam, karakterisert ved at det er etablert ein væskesirkulasjon rundt lekamen.2. Innretning i samsvar med krav 1, karakterisert ved at sirkulasjonen er oppretta ved at lekamen roterer omkring ein akse gjennom lekamen.3. Innretning i samsvar med krav 1, karakterisert ved at det er plassert dyser på overflata av lekamen og at det gjennom dysene blir pumpa væske tangensielt med overflata til lekamen, slik at det blir oppretta ein væskesirkulasjon rundt lekamen.4. Innretning i samsvar med krav 1, karakterisert ved at det er plassert to eller fleire propellar på ulike stader rundt periferien av lekamen og der propellane er innretta til å generera ein væske-straum i same retning rundt lekamen, slik at det på ein effektiv måte blir etablert ein sirkulasjon rundt lekamen.5. Innretning i samsvar med krav 1, karakterisert ved at lekamen er utforma med vengeprofil.6. Innretning i samsvar med krava 2 til 5 og der innretninga er laga for absorpsjon av bølgjeenergi^karakterisert ved at det blir nytta lekamar med parallelle sirkulasjonsaksar, men med motsette sir-kulasjonsretningar, slik at dei oscillerande bølgjekreftene blir motsett retta på lekamane og at det mellom lekamane er plassert pumper eller liknande for konvertering av bølgjeenergi til nytteenergi ved at den relative avstanden mellom lekamane oscillerer i takt med bølgjekreftene.7. Innretning for stabilisering av flytande konstruksjonar i bølgjer, karakterisert ved at det blir etablert sirkulasjon rundt ein neddykka del av konstruksjonen i samsvar med krava 2 til 5.
Hva betyr A1, B, B1, C osv? info
Kjell Budal
Institutt for eksperimentalfysikk 7034 TRONDHEIM NO ( TRONDHEIM kommune, SØR-TRØNDELAG fylke )
Kjell Budal
Institutt for eksperimentalfysikk 7034 TRONDHEIM NO ( TRONDHEIM kommune, SØR-TRØNDELAG fylke )
Institutt for eksperimentalfysikk 7034 TRONDHEIM NO ( TRONDHEIM kommune, SØR-TRØNDELAG fylke )

Statushistorie

Liste over statusendringer i sakshistorikk
Hovedstatus Beslutningsdato, detaljstatus
Endelig henlagt Før 2004.01.21

Til betaling:

Betalingshistorikk:

Liste av betalinger
Denne oversikten kan mangle informasjon, spesielt for eldre saker, om tilbakebetaling, internasjonale varemerker og internasjonale design.

Lenker til publikasjoner og Norsk Patenttidende (søkbare tekstdokumenter)

Allment tilgjengelig patentsøknad
Hva betyr A1, B, B1, C osv? info
Kapitler uten data er fjernet. Melding opprettet: 18.05.2024 15:35:47